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The author of this article critically analyses the proof of Gödel’s famous theorem on the incom-

pleteness of formalized arithmetic. It is shown that Gödel’s formalization of meta-mathematics pro-
vides a proof of the incompleteness not of mathematical science but of the system of formalized me-
ta-mathematics developed by Gödel himself. The arguments against the idea of the formalization of 
meta-mathematics are presented. The article suggests also an interpretation of the essence of math-
ematical truth. It is noted that the refutation of Gödel’s proof does not suggest returning to Hilbert’s 
program of formalism since the formalization of an axiomatic theory can’t exclude the appearance 
of paradoxes within its framework. It is shown that the use of self-referential Gödel’s numbering in 
a formalized system leads to the emergence of a Liar type paradox – a self-contradictory formula that 
demonstrates the inconsistency of that same system.  
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Introduction 
 

Gödel's theorem on the incompleteness of 
formalized arithmetic is one of the most widely 
accepted and highly evaluated results of logi-
cal and mathematical thought of the 20th cen-
tury (Gödel, 1931). It is this article, together 
with the previously proven fundamentally im-
portant theorem on the completeness of the 
first order predicate calculus that has deter-
mined the philosophy and ideology of all sub-
sequent studies on the foundations of mathe-
matics (Gödel, 1929). Encouraged by Gödel's 
results, many mathematicians began to investi-
gate the consistency of formalized systems 
(Smoryński, 1977; Smullyan, 1991). Other re-
searchers undertook an intensive study of the 

completeness of formalized calculi (Gentzen, 
1935). And the most independent minds, de-
spite general adoration before Gödel's proof of 
the incompleteness of formalized arithmetic, 
tried to restore the shaken authority of mathe-
matical science by proving the completeness of 
formalized mathematical theories (Henkin, 
1950; Hasenjaeger, 1953). The wave of publica-
tions on the significance of Gödel’s theorems 
(Franzén, 2005), their philosophical interpreta-
tion (Rucker, 1995; Wang, 1997), the current 
demonstrative exposition (Smith, 2007), at-
tempts to apply them far beyond the reasonable 
(Lucas, 1970; Feferman, 2011) continues to this 
day. 

The first part of this article demonstrates 
that Gödel’s proof of his incompleteness theo-
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rem is not valid, since in actuality it does not 
demonstrate the incompleteness of the Prin-
cipia Mathematica and the related sufficiently 
rich systems. 

The second part of this article discusses 
the general methodological problems of for-
malized theories and in its final section proves 
that if it is allowed to use Gödel’s numbering 
in a system (including formalized axiomatic 
theories) then in this system one can build a 
Liar type paradox demonstrating the incon-
sistency of this system. 

 
Part I 

 
1.1. Young Kurt Gödel in his famous 

1931 paper presented an instrument of logical 
proofs – Gödel’s numbering – and constructed 
with its help an undecidable formula G (Gödel, 
1931). Presuming that this formula belongs to 
the system of formalized arithmetic he con-
cluded that the system of formalized arithmetic 
is incomplete (Gödel’s theorem). 

The principle point here is that in actuality 
Gödel’s undecidable formula G does not be-
long to the system of formalized arithmetic 
presented in Principia Mathematica (Rusell & 
Whitehead, 1910) because to construct Gödel’s 
formula G one needs Gödel’s numbering 
which is absent in Principia Mathematica.  

So we have to conclude that Gödel’s 
proof of his incompleteness theorem is not 
valid, since it actually does not demonstrate 
the incompleteness of the Principia Mathemat-
ica and the related sufficiently rich systems. 

1.2. On the other hand, if a mathematician 
would like to use Gödel’s numbering in the 
system of formalized arithmetic he should do it 
by explicitly including Gödel’s numbering in 
the scope of means of that formalized system 

(Kleene, 1952). But in this kind enriched sys-
tem one can build Gödel’s undecidable formu-
la G which would demonstrate that this kind 
enriched system of formalized arithmetic is 
incomplete. It should be underlined here that 
this proof of incompleteness relates to the sys-
tem of formalized arithmetic enriched by Gö-
del’s numbering, but not of the classical sys-
tem of formalized arithmetic of Principia 
Mathematica. 
 

Part II 
 

The first part of this article concludes my 
refutation of Gödel’s proof of the theorem on 
the incompleteness of formalized arithmetic. 
Dear readers, in the case you would like to ob-
ject to my refutation, I ask you to apply only to 
the argumentation of the above presented first 
part of this article. 

In the second part of this article, I present 
the general methodological considerations 
which help to demonstrate eventually that if it 
is allowed to use Gödel’s numbering in a sys-
tem (including formalized axiomatic theories) 
then one can build a Liar type paradox 
demonstrating the inconsistency of that sys-
tem. 

2.1. The consistency of axiomatic theo-
ries. An axiomatic theory is considered as a 
matter of serious discussion only after it is able 
to show solutions to the main problems of the 
given field of scientific knowledge. We call 
such a theory well-developed axiomatic theory. 
Just at this stage, the axiomatic method demon-
strates its fundamental advantage. When a given 
axiomatic theory achieves such a weighty result 
– succeeds to solve the main problems of the 
field under investigation – one can express his 
suspicion in regard of this theory only in the 
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case if he can present at least one fact (a true 
singular statement) that contradicts any axiom 
or theorem of this theory. 

Until contradictory facts are found, a 
well-developed axiomatic theory is rightly re-
garded as a serious contender for the status of 
the true theory of the field under study. We 
emphasize that the theory achieves this high 
status precisely due to the successful axiomat-
ic resolution of the problems of the field un-
der study. Based on the presented analysis, we 
can propose the following preliminary defini-
tions of the consistency and truth of axiomatic 
theories: 

 An axiomatic theory is consistent, if it is 
in agreement with the facts of the field 
under study. 

 An axiomatic theory is a serious pretend-
er to the status of a true theory only inso-
far as it is successful in solving the main 
problems of the field under study. 
(The expression “this theory is in agree-
ment with the facts of the field under 
study” means that in this theory no state-
ment is derived that is denied by any 
known fact of the field under study.) 
2.2. True theory, absolute truth, and sci-

entific progress. In connection with the pro-
posed preliminary definitions, several ques-
tions arise. First, does an axiomatic theory 
remain for all time in the status of a “candi-
date” for becoming a true theory, or from a 
certain point in time and, according to a cer-
tain criterion, it deserves to be awarded the 
honorary title of a true theory? In a sense, it 
can be argued that in the eyes of the scientific 
community, theory achieves the status of “au-
thentic truth” from the moment it is included 
in official university handbooks. This actual 
state of affairs necessarily assumes both the 

decades of successful activity of this theory in 
solving the important problems of the field 
under research, and its “impeccable behav-
iour” – complete absence of contradictory 
facts. 

The second difficulty is expressed by the 
following question: “Are not the logic of Ar-
istotle, the geometry of Euclid and the me-
chanics of Newton completely true and in this 
sense the ultimate and absolute truths of theo-
retical knowledge?” A negative answer to this 
question was established after the develop-
ment and general recognition of the revolu-
tionary theories of theoretical physics of the 
20th century. Today, all educated people are 
well aware that the applicability of classical 
mechanics is limited to the field of phenome-
na of the macrocosm and is completely inap-
plicable neither to the world of atoms and el-
ementary particles, nor to the world of sub-
light speeds. Formation of the algebra of logic 
in the 19th century and the victorious advance 
of mathematical logic in the 20th century are 
reasonably perceived as the emergence of log-
ical systems more powerful than the Aristote-
lian syllogistic. And even the ideal of scientific 
knowledge – geometry – had to leave the ped-
estal of the absolutely true knowledge when 
mathematicians recognized the consistency of 
non-Euclidean systems of geometry developed 
in the 30s of the 19th century by Nikolai Loba-
chevski and János Bolyai, and especially when 
Bernhard Riemann presented to the society of 
mathematicians his grandiose system of geom-
etries in 1854 (Riemann, 2004). 

From what has been said, it can be con-
cluded that there are no absolutely true gen-
eral statements, laws and principles in the 
scope of scientific knowledge. And the fact 
that individual empirical judgments serve as 
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the starting material of human theoretical 
knowledge leads to the conclusion that human 
cognition is not given either the knowledge of 
an absolute truth or a universal criterion for 
absolutely true general statements. 

2.3. The essence of mathematical truth. 
In the modern formulation, this problem most 
often comes down to the question “How is 
truth defined in mathematics?”. The complex-
ity of the issue can be seen already in the fact 
that the author of the article “Truth” in Stan-
ford Encyclopedia of Philosophy Michael 
Glanzberg was forced to turn to the help of 
119 primary sources. The sub-section of this 
topic – “axiomatic theory of truth” – includes 
15 different conceptions of truth. The state of 
affairs is extremely complicated by the fact 
that the problem of truth in its genesis and 
nature, without doubt, has an inextricable link 
with philosophy, where diversity and contra-
dictory opinions are an unwritten norm. This 
article begins with the following paragraph: 
“Truth is one of the central subjects in philos-
ophy. It is also one of the largest. Truth has 
been a topic of discussion in its own right for 
thousands of years. Moreover, a huge variety 
of issues in philosophy relate to truth, either 
by relying on theses about truth, or implying 
theses about truth. It would be impossible to 
survey all there is to say about truth in any 
coherent way” (Glanzberg, 2013). 

The situation described does not inspire 
one more attempt to solve the problem of truth 
as a whole, and of the mathematical truth as its 
most difficult case, in particular. Yet let us 
make a new attempt by proceeding from the 
following premises: 

 The problem of truth is a problem of all 
the sciences, and in this sense, a philo-
sophical one. 

 The universal definition of truth goes 
back to Aristotle: “Truth is the adequacy 
of the thought and reality.” (“Veritas est 
adequatio ratio et rei”) 

 One needs to resolve specific questions of 
the theory of truth, and only then take up 
the development of a general conception. 

 The central problem of the theory of truth 
in mathematics is expressed by the ques-
tion: “What does exactly mean the notion 
reality in elucidating the truth of a math-
ematical statement?” 

 The staircase of abstractions suggests the 
existence of a principle possibility for the 
reduction of any abstraction to the level of 
elementary ones. Apparently, this is con-
firmed by the reduction of all mathemat-
ics to the theory of sets. 

 For the elementary abstractions, it is not 
difficult to find a correspondence with ob-
jects of reality. 
In formalized theories, a central role is 

played by models - theories with simpler ab-
stractions with strictly defined properties. With 
the help of models, one can answer the ques-
tion of the correspondence of abstract (mathe-
matical) statements to the real state of things. 

Thus, an unambiguous conclusion fol-
lows from the principle of reducibility: the 
truth of any abstract (mathematical) state-
ment is established by its correspondence to 
some simpler abstract model, which ulti-
mately means its reducibility to a certain ar-
ea of reality. 

That is, the whole peculiarity of mathe-
matical truth lies in the fact that in mathemat-
ics the truth of assertions is verified usually 
with the help of simpler abstract models 
which seem as if not having a direct relation 
to reality. Just this seeming separateness from 
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reality creates a sense of paradox: on the one 
hand, the reliability of mathematical truths 
seems unshakeable and absolute, on the other 
hand, in view of the abstract nature of math-
ematical statements, they are perceived as 
completely detached from reality, and the 
question of their truth appears hanging in the 
air. 

2.4. Formalism and formalization. Ac-
cording to Stefan Kleene's authoritative work 
“Introduction to Metamathematics”, the for-
malization of a theory means a formal repre-
sentation of the corresponding axiomatic theo-
ry (Kleene, 1952, chapter III). This is achieved 
in two steps. First, a complete symbolization of 
the axiom system of this theory is made. For 
this purpose, the initial symbols of the designa-
tion of all concepts appearing in the system of 
axioms should be fixed; with the help of this 
symbolism each axiom is presented as the cer-
tain initial formula. The second step of formal-
ization is the fixation of the rules of inference, 
with the help of which only new formulas are 
obtained from the axiom system of the formal-
ized theory. That is, thanks to formalization, 
the original axiomatic theory is transformed 
into a symbolic calculus. The philosophical 
strategy of constructing formalized calculi, 
originating from the works of Gottlob Frege 
and explicitly formulated by David Hilbert, is 
to achieve the greatest rigor in the formulation 
and development of axiomatic theories, which, 
in theory, should eliminate the emergence of 
contradictions and paradoxes in the developed 
formalized calculi. However, already on the 
eve of the publication of the second volume of 
his pioneering work “Grundgesetze der Math-
ematik”, Frege was extremely disturbed by the 
letter of the young Bertrand Russell, in which 
the German scholar was informed of a para-

dox, connected with the notion of the set of all 
sets, which was revealed in the first volume of 
Frege’s work. 

The discovery of similar paradoxes of the 
set theory and cardinal numbers, the Burali-
Forti paradox and the Cantor paradoxes, also 
belong to the same period. In the first decades 
of the twentieth century, they were supple-
mented by a popular analogue of Russell's par-
adox (the “paradox of barber”), while Richard 
revealed a paradox in the theory of real num-
bers. It was easy to notice that all these various 
paradoxes are very similar to the self-
referential ancient Liar paradox (Kleene, 1952, 
pp. 36-40). 

This specific feature of almost all known 
logical-mathematical paradoxes suggests that 
the source of paradoxes is hidden rather in the 
self-referentiality of the corresponding con-
cepts than in the axioms and logical means of 
inference. But the outstanding mathematician 
of the twentieth century, David Hilbert, con-
ceived the idea of “completely eradicating” the 
paradoxes from the mathematical kingdom by 
building mathematical theories in the form of 
extremely strict formalized calculi. Thanks to 
Hilbert's authority and the fact that many para-
doxes were perceived as belonging to the very 
foundation of mathematical knowledge, the 
direction of formalism in studies of the founda-
tions of mathematics began to gain increasing 
recognition. This was facilitated by Kurt Gö-
del's proof of the completeness of the first-
order predicate calculus, the basis of the foun-
dations of research on the foundations of 
mathematics (Gödel, 1929; Gödel, 1930; van 
Heijenoort, 1967). Naturally, the researchers 
had to cover the “gold rush” to be the first in 
proving the completeness of formalized arith-
metic. But Gödel himself put the seemingly 
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insurmountable barrier in front of the whole 
strategy of formalism by proving in 1931 his 
famous theorem on the incompleteness of for-
malized arithmetic. 

2.5. Is the idea of formalization of meta-
theories correct? Before we consider the me-
thodological aspects of Gödel's theorem, we 
need to carefully consider the concept of met-
amathematics and its natural generalization - 
the concept of metatheory. A formalized axi-
omatic system is called object-theory. Since 
the whole school of formalism arose to elimi-
nate the possibility of a contradictions and par-
adoxes in mathematical sciences, it is natural 
that the primary task of the theory of formal-
ized calculi was to establish their consistency. 
As the research of formalized theories has un-
folded, an equally important possibility of es-
tablishing their completeness has emerged. 
These two principal qualities of formalized 
systems are studied by metatheory, which, nat-
urally, should be outside the studied formal-
ized system. Otherwise, the formalized theory 
would study itself, which is illogical. Moreo-
ver, if the metatheory is formalized, it will lose 
the sense of distinguishing between metatheo-
ry and object-theory. 

But it was precisely the path of formaliz-
ing metamathematics that Gödel and his fol-
lowers chose. True, in his famous article Gö-
del does not use the terms metatheory and ob-
ject-theory, but by constructing his unsolvable 
formula G with the help of Gödel’s number-
ing and recursive functions, he actually real-
izes the formalization of metamathematics. 
The overwhelming part of the excellent work 
of S. K. Kleene “Introduction to metamathe-
matics” is devoted precisely to the strict and 
complete realization of Gödel’s line of math-
ematization of metamathematics. In the litera-

ture on foundations of mathematics, there is 
no objection to the evaluation of metatheory 
as proof theory – an idea originating from the 
work of D. Hilbert. Indeed, the only concrete 
predicate used in constructing Gödel's un-
solvable formula G is the predicate “to be a 
proof”. 

However, Kleene, and apparently under 
his influence, many authors of articles on for-
malization and metatheory believe that formal-
ized metatheory and metamathematics are part 
of mathematics. Klini insists that using 
Godel’s enumeration, “metamathematics be-
comes a branch of number theory” (Klini, 
1952, p. 205). The essence of the argument in 
favor of this position is this: mathematized 
metatheory is almost no different from other 
sections of mathematics and can quite be con-
sidered as a new section of mathematics. With 
this argument one could agree, if not for one 
important circumstance. In metamathematics 
in general, and in formalized metamathemat-
ics, in particular, no mathematical axiom or 
theorem is used, and no mathematical state-
ment is derived from them. The whole content 
of metamathematical discussions, even after 
the formalization of metamathematics, is a 
question of consistency, completeness, solva-
bility and similar characteristics directly relat-
ed and even expressible with the predicate “to 
be a proof”. That is, after formalization, meta-
theory remains a tool for studying the demon-
strative characteristics of formalized systems, 
including formalized mathematics. But how 
else could it be? After all, formalization chan-
ges only the language of presentation, but not 
the subject of research. Would the presentation 
of the Homer Iliad in the language of formal-
ized mathematics enrich the mathematical sci-
ences? And after the rhymed presentation of 
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the Euclid Principles, would it lose its mathe-
matical content? 

At first glance, it may seem that there is 
not much difference whether to say “Formal-
ized metamathematics is a part of mathemat-
ics” or to say “Formalized metamathematics is 
fully stated mathematically”. In fact, the dif-
ference is fundamental. In the first case, the 
construction of Gödel’s undecidable formula 
within the framework of formalized meta-
mathematics speaks not only of the incom-
pleteness of formalized metamathematics, but 
also of the mismatch of the mathematics itself, 
of which it is supposed to be a part. That is, 
assuming that the formalized metamathematics 
is part of mathematics, the undecidability of 
Gödel's formula can be represented as evi-
dence of the incompleteness of mathematics 
itself. 

In the light of modern meta-theoretical 
approach, it is of principle importance to dis-
tinguish mathematically stated theory of proof 
(meta-mathematics) from mathematics itself, 
even if the former is presented mathematically. 
Taking this differentiation for granted, the con-
struction of Gödel's undecidable formula with-
in the framework of formalized meta-mathe-
matics will only demonstrate the incomplete-
ness of formalized meta-mathematics, but not 
of the incompleteness of mathematics itself. 

We again came to the sacramental ques-
tion “Does Gödel’s formula belong to mathe-
matics or to the theory of proof?” As was 
proved above, the mathematization of any the-
ory does not in any way change its content. 
This conclusion is even more convincing in the 
case of Gödel’s formula. As Kleene explains, 
when interpreting the Gödel formula, it means 
a statement that “establishes its unprovability” 
(Klini, 1952, pp. 205; 207). Another interpreta-

tion is simply impossible, for Gödel's formula 
contains only one concrete predicate “to be a 
proof.” This unequivocally indicates that Gö-
del's formula belongs to the formalized theory 
of proof, and not to mathematics.  

If the supporters of Gödel’s proof of in-
completeness paid sufficient attention to this 
circumstance and adequately interpreted it, 
then from the fact that Gödel’s formula be-
longs to the formalized theory of proof they 
should conclude that just Gödel’s formalized 
theory of proof (formalized meta-mathematics) 
is incomplete, and not the system of formal-
ized arithmetic. That is, Gödel's theorem 
proves the incompleteness of the formalized 
theory of proof, but not of mathematics. 

2.6. Refuting Gödel’sproof does not mean 
the necessity of vitalizing David Hilbert’s pro-
gram of formalization. Bad concepts remain 
bad concepts also after their formalization. For 
example, the concept of material implication 
of propositional logic is not adequate to the 
concept of logical inference and remains non-
adequate also after the formalization in the 
frame of propositional calculus. It is rigorous-
ly proved that the propositional calculus is a 
consistent and complete formalized system. 
Yet the paradox of material implication is al-
so well known.  

Another example of a dubious instrument 
of argumentation is presented by self-reflexive 
expressions. In the context of this paper the 
most problematic instance of self-reflexivity is 
Gödel’s numbering. This self-reflexive instru-
ment was used in formalizing the system of 
metamathematics in his famous article on the 
incompleteness of formalized mathematics. All 
mathematicians knew about the affinity of self-
reflexive expressions with the Liar paradox; 
nevertheless, they in the overwhelming majori-
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ty consider it permissible to use this very 
doubtful means. 

The reason for such a protectionist atti-
tude to the use of a very doubtful means is that 
without the use of self-reflective expressions, it 
becomes very difficult to construct certain im-
portant sections of modern mathematical sci-
ence. After mentioning that the intuitive argu-
ment of Gödel’s proof “skirts so close and yet 
misses a paradox” S. Kleene himself couldn’t 
miss the feeling that proving a fundamental 
statement of incompleteness of formalized 
mathematic with the help of self-referential 
formula is rather undesirable taking into ac-
count the strictness of mathematical sciences. 
Apparently trying to justify the use of self-
referential numbering in Gödel’s proof, S. 
Kleene writes: “Its proof, while exceedingly 
long and tedious in these terms, is not open to 
any objection which would not equally involve 
parts of traditional mathematics which have 
been held most secure” (Kleene, 1952, p. 206). 

Suppose the position of mathematicians 
in relation to self-reflexive expressions can be 
understood. But how to go on with the phi-
losophers and methodologists of science who 
have learned from mathematicians that there 
are used highly questionable self-reflexive 
expressions in the grandiose building of mod-
ern science? 

2.7. Could the best logician of the twen-
tieth century make a simple logical mistake? 
In the context of this article we have in mind 
the question, “Could Gödel miss that his for-
mula, with its meaningful interpretation, does 
not express a mathematical statement?” After 
all, the interpretation of Gödel's formula G 
means only one thing: “G asserts that it is un-
provable”. It does not take much mental effort 
to notice that this statement does not contain 

any mathematical content. How could an out-
standing mathematician not notice this? 

This could be facilitated by the following 
circumstances. Apparently, the main thing 
was that Gödel’s theorem, elementary in its 
formulation, was proved by a grandiose and 
super complicated mathematical construction. 
It is quite natural that both its author and his 
followers should have the impression that this 
is just the proof of a mathematical statement. 
They could not have imagined that the grandi-
ose and super-complex mathematical construc-
tion of Gödel’s proof is only a rigorous repre-
sentation of the self-reflective assertion that “G 
claims to be unprovable”, which had only an 
indirect link with mathematics through the 
predicate “to be a proof” – the  basic category 
of formal logic since the days of the Aristoteli-
an Analytics. 

The bias in Gödel's assessment of his 
formula as of a mathematical statement could 
be facilitated also by the fact that the young 
genius of mathematical science had the follow-
ing psychological trait. From the school years, 
his each opinion the young genius considered 
the last truth, not subject to revision. His 
brother Rudolf Gödel mentioned that young 
Kurt had “a very individual and fixed opinion 
about everything and could hardly be con-
vinced otherwise. Unfortunately he believed 
all his life that he was always right not only in 
mathematics” (O'Connor & Robertson, 2003). 

Unconventional progress in the study of 
school subjects could not but strengthen this 
trait of the character of the young Gödel. The 
most difficult tests of school education have 
always been associated with the assimilation of 
Latin grammar, and young Kurt managed to 
cope unerringly with this difficult matter. Ru-
dolf Gödel had recalled later: “Even in High 
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School my brother was somewhat more one-
sided than me and to the astonishment of his 
teachers and fellow pupils had mastered uni-
versity mathematics by his final Gymnasium 
years. ... Mathematics and languages ranked 
well above literature and history. At the time it 
was rumoured that in the whole of his time at 
High School not only was his work in Latin 
always given the top marks but that he had 
made not a single grammatical error.” (O’Con-
nor & Robertson, 2003). 

2.8. The paradox of Gödel’s numbering. 
Every reader familiar with the Liar paradox “L 
claims that L is false”, on the first reading of 
the meaningful interpretation of Gödel’s for-
mula “G asserts that G is unprovable,” notices 
the close relationship of Gödel’s formula with 
the Liar paradox. Therefore, many researchers 
have a natural question, if can Gödel's self-
referential formula also lead to a paradox? 
Mathematicians reassure doubters that alt-
hough the relationship to the paradox is close, 
but Gödel's formula does not raise the paradox, 
since here it is a matter of unprovability, and 
not falsity. 

It would seem that the question of the 
paradox of Gödel's formula is in principle re-
moved by Tarski's theorem. Alfred Tarski in 
1936 proved that the arithmetical truth is inde-
finable in the system of formalized arithmetic 
(Tarski, 1936; Tarski, 1983). It would seem 
that mathematicians should have rejoiced after 
proving a theorem on the indefinability of 
truth. Indeed, if the truth is indefinable in the 
formalized theory, then it means that within 
the framework of this system there cannot arise 
either contradictions, or paradoxes. Tarski 
showed also that the concept of truth in this 
formalized theory can be determined by means 
of a richer formalized theory. Thus, the con-

cept of truth in a system of formalized arithme-
tic constructed using the predicate calculus of 
the first order is not definable. However, the 
concept of truth of first-order formalized 
arithmetic can be defined in formalized arith-
metic constructed by means of the predicate 
calculus of the second order, etc. Actually, we 
deal with a close analog of B. Russell’s hierar-
chy of types (Bolander, 2017). 

Here we digress from the essence of Tar-
ski's theorem and confine ourselves to pointing 
out Tarski's those ideas that we need to 
demonstrate the fundamental assertion that the 
use of Gödel’s numbering makes it possible to 
build a paradoxical (self-contradictory) formu-
la in a system of formalized arithmetic. First, 
in the very definition of his system, Tarski di-
rectly indicates that one of its main elements is 
Gödel's numbering. Secondly, in his system of 
formalized arithmetic, he uses the predicate “to 
be true”. Third, his proof of the theorem is 
based on the use of reductio ad absurdum, 
which makes it absolutely unessential to resort 
to the complex tool of recursive functions. 

Tarski’s theorem on the undefinability of 
truth directly concerns only a formalized theo-
ry. But Gödel’s numbering can be used outside 
formalized theories too. This means that using 
the predicate “to be true” instead of the predi-
cate “to be a proof”, we can use Gödel’s num-
bering to build in any system (including the 
formalized mathematics) the formula GT, 
which is a complete analogue of Gödel's for-
mula G. For realizing this idea, it is sufficient 
to replace the predicate “to be a proof” by the 
predicate “to be true” in all steps of construct-
ing Gödel's undecidable formula G. In the re-
sult of these procedures we get the formula GT 
which means “The proposition GT states that it 
is false.” And then it is not difficult to come to 
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the paradox: “The proposition GT is both true 
and false.” 

Indeed, let us turn to the help of the meth-
od reductio ad absurdum. 

First, let us suppose that the proposition 
GT is true. Then, according to its content, the 
proposition GT must be false. 

Now suppose the converse that the propo-
sition GT is false. This will mean “double ne-
gation” – the falsity of asserting the falsity of 
the proposition GT. And then, according to the 
law of double negation, we have to conclude 
that the proposition GT must be true. 

We come to a paradox, a demonstration of 
the self-contradiction of the proposition GT. 
The paradox of Gödel's numbering demon-
strates the inconsistency of any system (includ-
ing formalized mathematics) which allows us-
ing Gödel's numbering. 
 

Conclusions 
 

Gödel’s proof of his incompleteness the-
orem is not valid, since in actuality it does not 
demonstrate the incompleteness of the Prin-
cipia Mathematica and the related sufficiently 
rich systems. 

If it is allowed to use Gödel’s numbering 
in a system (including formalized axiomatic 
theories) then in this system one can easily 
build a Liar type paradox demonstrating the 
inconsistency of the system. 

The mathematical genius of Kurt Gödel is 
unquestionable. Grandiose proofs of the theo-
rem on the completeness of the first order 
predicate calculus and theorems on incom-
pleteness of formalized arithmetic, he received 
at the age of up to 25 years. A few years later 
he received no less significant results, proving 
the consistency of systems using the most fun-

damental means of set theory – the axiom of 
choice and the continuum hypothesis. The 
above demonstration of the inconsistency 
emerging from the use of Gödel’s numbering 
in no way can reduce the merits of the great 
logician and mathematician in the history of 
the twentieth-century science. 
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