The Paradox of Gödel’s Numbering and the Philosophy of Modern Metamathematics
DOI:
https://doi.org/10.24234/wisdom.v9i2.185Keywords:
formalized theories, metatheory, Gödel’s theorem, Gödel’s numbering, formalized metamathematics, inconsistency, paradoxesAbstract
The author of this article critically analyses the proof of Gödel’s famous theorem on the incompleteness of formalized arithmetic. It is shown that Gödel’s formalization of meta-mathematics provides a proof of the incompleteness not of mathematical science but of the system of formalized meta-mathematics developed by Gödel himself. The arguments against the idea of the formalization of meta-mathematics are presented. The article suggests also an interpretation of the essence of mathematical truth. It is noted that the refutation of Gödel’s proof does not suggest returning to Hilbert’s program of formalism since the formalization of an axiomatic theory can’t exclude the appearance of paradoxes within its framework. It is shown that the use of self-referential Gödel’s numbering in a formalized system leads to the emergence of a Liar type paradox – a self-contradictory formula that demonstrates the inconsistency of that same system.
Downloads
References
Feferman, S. (2011). Gödel’s Incompleteness Theorems, Free Will and Mathematical Thought. (R. Swinburne, Ed.) Free Will and Modern Science, 102–122.
Franzén, T. (2005). Gödel's Theorem: An Incomplete Guide to its Use and Abuse. Wellesley: A. K. Peters.
Gentzen, G. (1935). Untersuchungen über das logische Schließen, I & II. MathematischeZeitschrift, 39, 176–210, 405–431.
Glanzberg, M. (2013, January 22).Truth. Retrieved November 22, 2017, from Stanford Encyclopedia of Philosophy: https://plato.stanford.edu/archives/win2016/entries/truth/.
Gödel, K. (1929). Über die Vollständigkeit des Logikkalküls (Doctoral dissertation). University ?f Vienna.
Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik, 37(1), 349–360.
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik, 38, 173–98.
Hasenjaeger, G. (1953). Eine Bemerkung zu Henkin’s Beweis für die Vollständigkeit des Prädi-katenkalküls der ersten Stufe. Journal of Symbolic Logic, 18, 42–48.
Henkin, L. (1950). Completeness in the Theory of Types. Journal of Symbolic Logic, 15(2), 81–91.
Kleene, S. C. (1952). Introduction to Metamathematics. North Holland.
Lucas, J. R. (1970). The Freedom of the Will. Oxford: Clarendon Press.
O'Connor, J. J., & Robertson, E. F. (2003, October). Kurt Gödel. Retrieved November 19, 2017, from http://www-history.mcs.stand.ac.uk /Biographies/Godel.html.
Riemann, B. (2004). Collected Papers. Heber City, UT: Kendrick Press.
Rucker, R. (1995). Infinity and the Mind: The Science and Philosophy of the Infinite. Princeton University Press.
Rusell, B., & Whitehead, A. (1910). Principia Mathematica (Vol. I). Cambridge University Press.
Smith, P. (2007). An Introduction to Gödel's Theorems. Cambridge: Cambridge University Press.
Smory?ski, C. (1977). The Incompleteness Theorems. In J. Barwise (Ed.) Handbook of Mathematical Logic (pp. 821–866). Amsterdam: North-Holland.
Smullyan, R. (1991). Gödel's Incompleteness Theorems. Oxford: Oxford University Press.
Tarski, A. (1936). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1, 261–405.
Tarski, A. (1983).The Concept of Truth in Formalized Languages. In J. Corcoran (Ed.) Logic, Semantics, Metamathematics (pp. 152–278). Hackett.
van Heijenoort, J. (Ed.) (1967). From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Cambridge, MA: Harvard University Press.
Wang, H. (1997). A Logical Journey: From Gödel to Philosophy. MIT Press.
Downloads
Published
How to Cite
Issue
Section
License
Creative Commons Attribution-Non-Commercial (CC BY-NC). CC BY-NC allows users to copy and distribute the article, provided this is not done for commercial purposes. The users may adapt – remix, transform, and build upon the material giving appropriate credit, and providing a link to the license. The full details of the license are available at https://creativecommons.org/licenses/by-nc/4.0/.