Social and Emotional Interactions for AI

Authors

  • Mariam A. DAVTYAN Yerevan State University

DOI:

https://doi.org/10.24234/wisdom.v29i1.1112

Keywords:

Artificial intelligence, robotics, large language models, communication, empathy, sensory systems, emotional intelligence, social schools, human-AI interaction, experiential learning

Abstract

Advancements in artificial intelligence (AI) and robotics are ushering in systems capable of mean-ingful, human-like interactions. This article explores the integration of large language models (LLMs) into humanoid robots, also emphasizing the existence of technologies allowing robots to mimic human sensory systems—vision, hearing, touch, and smell—and analyze stimuli to generate emotionally resonant responses. A central focus is placed on the role of communication in fostering empathy. Drawing on philosophical insights and technological innovations, we propose that AI systems can enhance their intellectual and emotional capabilities through experiential learning. Embedding robots in “social schools” or “kindergartens,” where they observe and practice body language, cultural norms, and emotional expressions, is suggested as a pathway to developing empathy and understanding. This approach is not just about programming intelli-gence but nurturing it, ensuring these systems embody human-like emotional depth and cultural awareness. By fostering communication-driven development, AI can evolve into companions capable of meaningful, empathetic relationships, advancing human-machine integration while maintaining ethical considerations.

Downloads

Download data is not yet available.

References

Aristotle. (n.d.). Nicomachean Ethics, Book 1, Chapter 7 (W. D. Ross, Trans.). Retrieved from http://classics.mit.edu/Aristotle/nicomachaen.html

Bommasani, R., et al. (2021). “On the Opportunities and Risks of Foundation Models”. arXiv preprint arXiv:2108.07258.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., & Amodei, D. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33, 1877–1901. https://arxiv.org/abs/2005.14165

Calvi, E., Quassolo, U., Massaia, M., et al. (2020). The scent of emotions: A systematic review of human intra‐ and interspecific chemical communication of emotions. Brain and Behavior. https://doi.org/10.1002/brb3.1585 DOI: https://doi.org/10.1002/brb3.1585

CEUR Workshop Proceedings. (2023). Neuroprosthetics and AI integration: Enhancing human-machine interfaces. CEUR Workshop Proceedings, 3842, 120–130. Retrieved from https://ceur-ws.org/Vol-3842/paper13.pdf

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., et al. (2022). PaLM: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311 .

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017). Deep reinforcement learning from human preferences. Advances in Neural Information Processing Systems, 30, 4299–4307. Retrieved from https://arxiv.org/abs/1706.03741

Durkheim, É. (1984). The division of labor in society (W. D. Halls, Trans.). New York: Free Press. (Original work published 1893)

El-Kady, M. (2020). Humanoid robot actuation through precise chemical sensing signals. Advanced Materials Technologies, 5(6), 1900570. https://doi.org/10.1002/admt.201900570 DOI: https://doi.org/10.1002/admt.201900570

Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24(1), 13–23. https://doi.org/10.1016/S0160-2896(97)90011-8 DOI: https://doi.org/10.1016/S0160-2896(97)90011-8

Habermas, J. (1984). The theory of communicative action: Reason and the rationalization of society (Vol. 1, T. McCarthy, Trans., Chapter 1, pp. 1–42). Boston: Beacon Press.

Panov, A. D., & Filatov, F. P. (2023). Razum v Mul'tiverse vechnoy khaoticheskoy inflatsii (Mind in the Multiverse of Eternal Chaotic Inflation, in Russian). Socionauki (Socionauki, in Russian). Retrieved from https://www.socionauki.

ru/news/3562368/

Park, J. S., O'Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., & Bernstein, M. S. (2023). Generative agents: Interactive simulacra of human behavior. Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology (UIST '23), 2:1–2:22. https://doi.org/10.1145/3586183.3606763 DOI: https://doi.org/10.1145/3586183.3606763

Planet Labs. (n.d.). Precision agriculture solutions. Retrieved from https://www.planet.com/industries/agriculture/

Raffel, C., et al. (2020). “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”. Journal of Machine Learning Research, 21(140), 1-67.

Regier, T., Kay, P., Gilbert, A. L., & Ivry, R. B. (2007). Language and thought: Which side are you on, anyway? University of Chicago and University of California, Berkeley.

Rousseau, J.-J. (1762). Émile, or On Education. Retrieved from https://oll.libertyfund.org/titles/rousseau-emile-or-education

Smith, A. (1759). The Theory of Moral Sentiments. Retrieved from https://www.gutenberg.org/cache/epub/67363/pg67363-images.html DOI: https://doi.org/10.1093/oseo/instance.00042831

SoftBank Robotics. (n.d.). Pepper the Humanoid Robot. Retrieved from https://us.softbankrobotics.com/pepper

South China Morning Post. (2023). Robot leading mass escape stokes laughs and fears over AI in China. Retrieved from https://www.scmp.com/tech/tech-trends/article/3288056/video-robot-leading-mass-escape-stokes-laughs-and-fears-over-ai-china

Stanford Encyclopedia of Philosophy. (n.d.). Linguistic Relativity and Whorfianism. Retrieved from https://plato.stanford.edu/entries/linguistics/whorfianism.html

Stanford Institute for Human-Centered Artificial Intelligence. (2023). Computational agents exhibit believable humanlike behavior. Retrieved from https://hai.stanford.edu/news/computational-agents-exhibit-believable-humanlike-behavior

Tesla, Inc. (2024, November 28). Tesla Optimus shows off new upgrade [Video]. Teslarati. Retrieved from https://www.teslarati.com/tesla-optimus-new-hand-upgrade/

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al. (2023). Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.

van Nieuwenburg, D., de Groot, J. H. B., & Smeets, M. A. M. (2019). The subtle signaling strength of smells: A masked odor enhances interpersonal trust. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01890 DOI: https://doi.org/10.3389/fpsyg.2019.01890

Waymo Research. (n.d.). Autonomous driving technology and research. Retrieved from https://waymo.com/research

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q. V., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems (Vol. 35, pp. 24,824–24,837). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

Woebot Health. (2023). Woebot: An AI-powered mental health chatbot. Retrieved from https://woebothealth.com/

Zhang, J., Pu, R., Wang, J., Huang, W., Yuan, L., & Luo, J. (2019). Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery. Frontiers in Plant Science, 10, 2. https://doi.org/10.3389/fpls.2019.00002 DOI: https://doi.org/10.3389/fpls.2019.00002

Hanson Robotics. (2016). Sophia the Robot. Retrieved from https://www.hansonrobotics.com/sophia/

Hume, D. (1739). A Treatise of Human Nature. London: John Noon. Retrieved from https://www.gutenberg.org/ebooks/4705 DOI: https://doi.org/10.1093/oseo/instance.00046221

IEEE. (2023). AI in neuroprosthetics: Real-time control and sensory feedback. IEEE Robotics and Automation Magazine, 30(4), 50–60. https://doi.org/10.1109/RAM.2023.9738457

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101 DOI: https://doi.org/10.1136/svn-2017-000101

Kuindersma, J., Permenter, F., Deits, R., et al. (2016). Optimization-based locomotion planning, estimation, and control design for the Atlas humanoid robot. Autonomous Robots, 40(3), 429–455. https://doi.org/10.1007/s10514-015-9479-3 DOI: https://doi.org/10.1007/s10514-015-9479-3

Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago: University of Chicago Press.

McGilchrist, I. (2021). The Matter with Things, Vol. 1: “The Argument” (p. xvii).

Mead, G. H. (1934). Mind, Self, and Society. Retrieved from http://tankona.free.fr/mead1934.pdf

Musk, H., & Tesla Inc. (2023). Intelligent humanoids in manufacturing to address worker shortage and skill gaps: Case of Tesla Optimus. arXiv preprint. https://doi.org/10.48550/arXiv.2304.04949

OpenAI. (2023). GPT-4 Technical Report. Retrieved from https://arxiv.org/pdf/2303.08774v3.pdf

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35, 27730–27744. https://arxiv.org/abs/2203.02155

Downloads

Published

2024-06-25

How to Cite

A. DAVTYAN, M. (2024). Social and Emotional Interactions for AI. WISDOM, 29(1). https://doi.org/10.24234/wisdom.v29i1.1112

Issue

Section

Articles